Fit an xsdm model
fit_xsdm.Rd
Fit an xsdm model
Usage
fit_xsdm(
xsdm_object,
fit = NULL,
recompile = FALSE,
normalize = FALSE,
prior_parameters = list(mu_par_1 = NULL, mu_par_2 = NULL, sigl_par = NULL, sigr_par =
NULL, c_par_1 = NULL, c_par_2 = NULL, L_par = NULL),
nchains = NULL,
compile_standalone = FALSE,
...
)
Arguments
- xsdm_object
an xsdm object created with constuctor and validated
- fit
String. Default is TRUE. Calculate parameters either by sampling, optimization or Laplace methods. Calculate the mle estimation (default) or Maximum a posteriori estimation (need to pass jacobian = TRUE argument). Possible parameters are c("mle", "map", "mle.laplace", "map.laplace")
- recompile
Default FALSE. If TRUE, recompile the Lewontin-Cohen model to use features not availiable out of the box. It is needed to use laplace and optim methods.
- normalize
Logical, normalize the time series using the mean and the standard deviation of the presence-absence provided points
- prior_parameters
list with parameters passed to prior.
- nchains
Default NULL. The number of mcmc chains passed to cmdstanr sample function.
- compile_standalone
Default TRUE. It is useful to export loglik functions
- ...
argument passed to stan model sampling