Evaluation metric of plus classification
plus_cv_lognet.Rd
Evaluation metric of plus classification
Usage
plus_cv_lognet(
predmat,
y,
type.measure = c("deviance", "class", "auc", "mse", "mae"),
weights = NULL
)
Value
If the type.measure is AUC returns auc value. Otherwise returna vector of values given the metrics.
Examples
x_train <- matrix(rnorm(650 * 20), 650, 20)
x_test <- matrix(rnorm(350 * 20), 350, 20)
y_train <- ifelse(rnorm(650) > 0, 1, 0)
y_test <- ifelse(rnorm(350) > 0, 1, 0)
fit <- plus(x_train, y_train)
p <- predict(fit,newx = x_test)
plus_cv_lognet(p, y_test, type.measure = "auc")
#> $cvraw
#> [,1]
#> [1,] 0.5246073
#>
#> $weights
#> 1
#> 350
#>
#> $N
#> [1] 1
#>
#> $type.measure
#> [1] "auc"
#>